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ABSTRACT 

Introduction:  The purpose of this study was to compare the shear bond strength of 

three different pylon orientations on the ODP ANCHOR-LOCK™ bracket pad.   

Null hypothesis:  Pylon orientation does not significantly affect shear bond 

strength. 

Methods:  Three groups, consisting of 25 brackets each, were bonded to secured 

surfaces of Transbond XT.  Each group of brackets had a distinct pylon orientation.  

The three different pylon orientations included: Group 1 (0 degree brackets with 90 

degree pylons), Group 2 (-7 degree brackets, with acute pylon orientation to shear 

force), and Group 3 (-7 degree bracket flipped to achieve +7 degree bracket with 

obtuse pylon orientation to shear force).    Shear bond strength was determined 

using a universal testing machine.  An analysis of variance, one-way ANOVA test 

was performed to determine if there was a significant difference between the three 

different pylon orientations. A Tukey HSD test was used to help determine which 

orientations were significantly different from one another.  The Kruskal Wallis test 

was used to assess the Adhesive Remnant Index (ARI) scores for any significant 

differences.  After a difference was determined, the Mann-Whitney test was used to 

determine which groups were significantly different (P< 0.05).   

Results: No significant differences existed between Groups 1 and 2.  Group 3 was 

found to have significantly lower shear bond strength than groups 1 and 2 (P < 

0.001).  Group 3 was also found to have a significantly lower adhesive remnant 

score (less adhesive remaining on the bracket) than groups 1 and 2 (P < 0.001).   
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Conclusions:  This study concluded that pylon orientation affects shear bond 

strength.  Perpendicular and acute of pylon angles (relative to the direction of force 

applied) had significantly higher shear bonds strengths (and more adhesive 

remnants within the bracket base) than obtuse pylon angles.  However, no 

significant differences were found between perpendicular and acute pylon 

orientations in regards to: shear bond strength, and ARI (Adhesive Remnant Index). 
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I.  BACKGROUND AND LITERATURE REVIEW 

A.  INTRODUCTION 

1.  Orthodontics before Brackets 

Humans have attempted to improve tooth alignment for a very long time.  

According to the American Association of Orthodontists, in “no later than 1,000 B.C., 

ancient Greeks began using base metals and cat gut in a determined effort to take 

the smile provided by nature and make it better.”  The first scientific attempt at tooth 

alignment occurred in 1728, when Pierre Fauchard constructed the bandeau 

(Brodie, 1934).  The bandeau was made from a flat metal strip connected to the 

teeth by pieces of thread which allowed the dentition to be tipped into an expanded 

arch form (Figure 1).  Delabarre published the plan of the wire crib in 1826, marking 

the birth of contemporary orthodontics (Figure 2).  “Delabarre’s wire crib was used 

for the purpose of keeping the antagonizing teeth apart while other teeth were being 

regulated by strings.  This crib probably suggested to later operators the use of cribs 

for anchoring metallic springs” (Farrar, 1888).  In 1841, Schange invented the first 

bands which consisted of metal strips with screws to adjust the size.  The first dental 

cement for securing bands to teeth was developed in 1870 by Magill (Steiner, 1933).  

According to Steiner (1933), Edward Angle invented edgewise brackets attached to 

bands in 1928 (Figure 3).  Early 20th century orthodontic appliances were primarily 

made from precious metal, steel, and vulcanite.  It took until the late 1950s for 

stainless steel to be widely accepted as a suitable material for arch-wires and other 

appliances (Sellke, 1999). 
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Figure 1:  Fauchard’s Bandeau.  Although Fauchard appears to be one of the 

earliest writers who described mechanisms for correcting irregular teeth, he does not 

claim that the strip was originated by him.  M. Desirabode, a later writer (1823), in 

speaking of these strips, says that he thinks they have probably been in use since 

“ancient times” (Farrar, 1888). 

 

(Steiner, 1933) 
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Figure 2:  Delabarre’s Crib 

A - This was made of six pieces of wire bent and soldered together as shown 

(Farrar, 1888). 

 

 

B - When ready to apply it was forced over the side teeth as shown below, the 

lower wires hugging tightly their necks (Farrar, 1888). 
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Figure 3:  Edward Angle’s Edgewise appliance.  Band designed to allow 

relatively efficient control of tip, torque and rotation (Steiner, 1933). 
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2.  The Shift from Bands to Brackets 

The orthodontic community has been bonding brackets directly to enamel 

since the development of three critical techniques:  Buonocore’s introduction of 

enamel etching in 1955 (Buonocore, 1955), the development of composite resin 

cements (Bowen, 1962) and Newman’s description of how to bond attachments 

directly to enamel using epoxy resin in 1965 (Newman, 1965).  Direct bonding of 

orthodontic brackets has advantages over banding that have made its use 

widespread for nearly half a century.  These improvements include:  esthetics, ease 

of manipulation, decreased patient discomfort, decreased gingival irritation, 

improved oral hygiene maintenance, control over partially erupted teeth and the 

elimination of band thickness (Reynolds, 1975; Bishara et al, 1999).  To create a 

successful bond, three factors are vital: (1) the tooth surface, (2) the adhesive, and 

(3) the bracket backing (Reynolds, 1975). 

3.  Tooth Surface and its Preparation for Bonding 

Fully formed enamel is a highly mineralized extracellular matrix, consisting of 

96% mineral and 4% organic matrix and water.  The inorganic content of enamel is 

mainly crystalline calcium phosphate, called hydroxyapatite (Ten Cate, 1994).  

Untreated enamel does not contain enough porosity to allow for clinically sufficient 

bond strength (Cehreli et al, 2006).   

In an effort to increase the adhesion to the tooth surface, Buonocore (1955) 

pioneered the acid-etching technique with 85 percent phosphoric acid.  The irregular 
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enamel surface (microporosities) created by dissolving hydroxyapatite crystals 

permits penetration of the fluid-adhesive components of the bonding system and this 

penetration provides micromechanical retention (Basaran et al, 2007; Retief, 1978).  

It is now known that phosphoric acid concentrations greater than 50 percent result in 

the formation of a monocalcium phosphate monohydrate that inhibits further 

dissolution and concentrations above 10% does not significantly decrease bond 

strength (Chow et al, 1973; Gottlieb et al, 1982).  Currently, phosphoric acid 

concentrations between 30-40% are used (Silverstone, 1974).  Specifically, 37% 

phosphoric acid is most commonly used clinically as it provides similar bond 

strengths to higher concentrations, with less damage occurring to the enamel 

surface (Denys and Retief, 1982; Sadowsky et al., 1990; Carstensen, 1992).  With 

37% phosphoric acid, 15 seconds of etching is sufficient (Carstensen, 1986; Osario 

et al, 1999). 

Self-etching primers have become popular in an effort to improve the 

efficiency of the bonding procedure.  The suggested benefits of self-etching primers 

include: maintaining clinically useful bond strengths while minimizing the amount of 

enamel loss, and simplifying the technique by reducing the number of steps (Cal-

Neto et al, 2006).  Several studies have found that self-etching primers are able to 

achieve clinically acceptable levels of bond strength and there is not a statistically 

significant difference between conventional multi-step etch and prime and self-

etching techniques (Bishara et al, 2001; Arnold et al, 2002, Velo et al, 2002; 
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Cacciafesta et al, 2003; Dorminey et al, 2003; Ireland et al, 2003; Larmour et al, 

2003; Cehreli et al, 2005; e Cal-Neto et al, 2006).   

4.  Adhesives 

a.  Development 

Development of the direct bonding technique was closely related to the 

advances in adhesives that were capable of withstanding the forces needed for 

orthodontic treatment and could be removed when then treatment was complete.  In 

1962, Bowen developed the BIS-GMA formula on which current orthodontic bracket 

bonding is primarily accomplished.  Newman (1965) began with an epoxy resin, but 

found that the 15-minute cure time was too long and switched to modified acrylic 

resins with a cure time of five minutes.  The advances in adhesives have continued.   

A 2003 Cochrane Summary (Mandall et al, 2009) compared a chemically cured 

composite, with light-cured composite, conventional glass-ionomer cement and 

polyacid-modified resin composite (compomer).  The results of this summary were 

inconclusive.  However, Faltermeier et al (2007) noted that the best mechanical 

properties could be achieved by incorporating high concentrations of filler particles of 

various sizes into the resin.  When Vilchis et al (2008) compared five orthodontic 

adhesives (Transbond XT, Light Bond, BeautyOrtho Bond, Kurasper F, Heliosit 

Orthodontic, and a flowable orthodontic resin Salivatect), it was determined that 

there is no superiority of any specific filler because every type of filler offers 

advantages and disadvantages.   
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b.  Resin-Based Composites 

 Composite materials consist of two or more components.  A resin-based 

composite typically contains three major components:  an organic binder, inorganic 

filler and a coupling agent (Craig, 1977; Phillips 1982).  The organic resin matrix is 

the chemically active component.   

The least ideal characteristic of resin-based composites is volumetric 

shrinkage during the conversion of monomer to polymer (Combe et al, 2000).  The 

resin matrix of all resin-based composites undergoes volumetric shrinkage of 

approximately 10%.  This shrinking causes stress at the bonded interface with the 

adjacent tooth surface (Glen, 1982).  The total polymerization shrinkage of 

comparable chemically-activated and light-activated resins do not differ significantly 

(Phillips, 1991; Craig, 1997).  Fillers reduce the polymerization shrinkage and 

coefficient of thermal expansion of the material as well as improve abrasion 

resistance (Craig 1997).  Resin-based composites can be classified according to 

particle filler size: 

 Mega-fill   0.5–2 millimeters  

 Macro-fill   10–100 microns  

 Mid-fill   1–10 microns  

 Mini-fill   0.1–1 microns  

 Micro-fill   0.01–0.1 microns  

 Nano-fill   0.005–0.01 microns  
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 Modern orthodontic resin-based composites are mini-filled, with particles 

averaging 0.1-1 um. The filler content of orthodontic resin cements is lower than 

restorative resins.  This is primarily for the properties of sufficient bond strength and 

easier removal of the remaining cement during debonding (Smith & Williams, 1982). 

c.  Glass Ionomer Cements (GICs) 

 In orthodontics, Type I GICs are typically used.  They are usually used for 

cementing bands, but they have also been used to bond orthodontic brackets.  Type 

II GICs are restorative materials, and Type III are lining materials and fissure 

sealants (Richardson, 2010). 

 Fluoride is an important component of a GIC as it assists in the manufacturing 

of the glass by lowering fusion temperature and enhances the working 

characteristics and mechanical properties of the cement (Wilson & Nicholson, 1993).  

Glass ionomer cements also have the ability to release (Fox, 1990; Ashcraft et al., 

1997) and absorb fluoride (Hatibovic-Kofman & Koch, 1991; Creanor et al., 1994).  

Studies comparing fixed appliance treatment bonded with either glass ionomer or 

composite adhesive found that there was a significant reduction in the number of 

white spot lesions only when total treatment time exceeded 16-18 months 

(Marcusson et al., 1993; Millett et al., 1999).   

 Glass ionomer cements adhere directly to enamel without the need for 

additional bonding agents and surface treatments (Millet and McCabe, 1996).  The 

primary mechanism for adhesion is derived from the ability of the acid to clean, 
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penetrate and roughen the tooth surface which decreases surface energy and 

facilitates both micromechanical and chemical bonding (McClean, 1996). 

d.  Resin-modified Glass Ionomer Cements (RMGIC) 

 These cements combine the advantages of conventional GICs with the 

mechanical and physical properties of composite resin cements (Beress et al., 

1998).  Resin-modified glass ionomer cements undergo both a polymerization 

reaction (involving the resin monomer) and a significant acid-base reaction (large 

enough to produce a settling reaction in the dark) (Bourke et al., 1992; McClean et 

al., 1994).  Resin-modified glass ionomer cements that possess photochemical 

settling reactions also appear to have a reduction in sensitivity to moisture, since the 

resin network reduces the diffusion of external water into the settling cement (Cho et 

al., 1995; Shen and Grimaudo, 1994).  

5.  Bracket Base 

a.  Metal 

When using metal brackets, most bonding failures occur between the cement 

and the bracket (Algera et al, 2008; Knoll et al, 1986; Wang et al, 2004).  This holds 

true when brackets are debonded (Hanson et al, 1983, Simoka et al, 1985).  One 

explanation for this finding may be that metal bracket bases rely on mechanical 

retention (Lombardi et al, 2007) since they do not form a chemical bond with the 

adhesive (Furguson et al., 1984).  
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The initial metal bracket bases were milled from cold-drawn stainless steel 

and had crude perforated bases (Figure 4) into which adhesive could flow 

(Sheykholeslam and Brandt, 1977, Thanos et al., 1979).  This original base design is 

no longer used due mainly to: limited mechanical bond strength, plaque retention, 

and poor esthetics.  In an attempt to improve these properties, many types of base 

surfaces have been developed.  One of the first design improvements was the 

introduction of foil-mesh bracket bases (Figure 5), which resulted in greater bond 

strength (Reynolds and von Fraunhofer, 1977; Faust et al., 1978, Thanos et al., 

1979; Lopez, 1980).  This new base design was also shown to have a smoother, 

less plaque-retentive surface (Maijer and Smith, 1981).  In the initial design, the foil 

mesh was welded to the bracket base.  It was later suggested that these weld points 

lead to stress concentrations in the adjacent resin, decreasing the base bond 

strength (Dickson et al, 1980; Maijer and Smith, 1981).  The solution for this was 

found by using a laser for welding or mesh attachment by brazing yielding better 

tensile and shear bond strengths (Dickinson and Powers, 1980; Lopez, 1980; Maijar 

and Smith, 1981).   
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Figure 4:  Perforated bracket base. 

  

(Waller DE, 1974) 

 

I 
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Figure 5:  Foil mesh base. 

   

(Willems et al, 1997) 
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Another bracket innovation is the integral base bracket (Figure 6).  In this 

design the bracket and base are cast as an integral unit and incorporate undercut 

channels for mechanical retention (Mahal, 2000).  This type of bracket can be 

machined (milled) or cast.  Of the two designs, cast appears to have greater micro-

mechanical retention resulting in higher bond strengths (Regan & van Noort, 1989). 
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Figure 6: Cast integral base. 

   

(Willems et al, 1997) 
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When the different base types are compared, they yield somewhat conflicting 

results.  80 gauge mesh foil has been found to be the most retentive mesh foil size, 

providing for large spaces for the penetration of the adhesive and the curing light 

(Maijer et al, 1981, Sharma-Sayal et al, 2003).  However, it has also been found that 

no significant differences were found between 80 gauge mesh, 100 gauge mesh, 

and mini and standard-size bases (Cucu et al, 2002).  Cast integral bases have 

shown superior bond strengths when compared with a conventional foil mesh and an 

integral milled base (Regan & van Noort, 1989).  However, mesh-based brackets 

have been found to be more retentive in tension, whereas metal-based brackets 

were more retentive in shear (Thanos et al, 1979).  Fine-mesh base had higher 

tensile bond strength than coarse mesh, and both had a higher tensile strength than 

the undercut base (Smith et al, 1991).  Victory Series brackets have shown superior 

bond strength to the majority of integral base brackets (Cozza et al, 2006).  Although 

no overall trend has been identified to this point, it appears that certain combinations 

of bracket base and bonding agent perform optimally (Knox et al, 2000; Urabe et al, 

1999).   

Regan and van Noort (1989) suggested that the adhesive/bracket interface 

strength may be improved by improving the base design to increase the amount of 

available undercut while allowing for the escape of air and excess adhesive.  In 

addition, maximum advantage can be taken of the undercut areas if they have a 

roughened surface to provide additional micromechanical retention. Since light does 

not travel through metal bracket bases, it has been suggested that polymerization of 
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a light-cured adhesive resin may be incomplete (Sargison et al., 1995).  Knox et al 

(2000) added that particular base designs may allow improved adhesive penetration 

or improved penetration of the curing light.    

In an effort to further increase micromechanical retention, multiple techniques 

have been investigated.  Examples include:  additional photo-etch techniques (laser 

structuration, electroerosion), double-mesh/super mesh (Figure 7) (Lombardi et al, 

2007), sandblasting (Figure 8), etching, surface activation, sintering, and adhesive 

precoating.  Even the surface area of the base has been examined.  MacColl (1995) 

has shown that if a bracket base has a surface area of less than 6.82 mm^2, shear 

bond strength is significantly decreased.   
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Figure 7: Super Mesh/Double mesh base. 

  

(Willems et al, 1997) 
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Figure 8: Sandblasted mesh base. 

   

(Willems et al, 1997)  
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b.  Ceramic 

 In response to demands for better aesthetics during treatment, ceramic 

brackets (Figure 9) were introduced in the 1980s (Birnie, 1980; Russell, 2005).  

Early ceramic brackets used a silane-coupling agent to act as a chemical mediator 

between the ceramic bracket base and the adhesive resins.  This chemical bond 

resulted in extremely high bond strengths. The combination of the ceramic’s high 

resistance to deformation and the extremely high bond strengths results in enough 

stress to the enamel during debond to risk enamel damage (Russell, 2005; Forsberg 

& Hagberg, 1992).  Additionally, as the ceramic and cement interface bond strength 

increases, the incidence of bond failure occurring at the enamel-cement interface 

increases.  Bond failure in this location results in an increased incidence of enamel 

fractures (Swartz, 1988b; AAO 1989, Harris et al, 1990; Joseph and Rossouw, 1990; 

Storm, 1990; Machen, 1990).  Due to this, the majority of ceramic brackets currently 

rely solely on mechanical retention.  When debonding mechanically retained ceramic 

brackets the risk of enamel damage is no greater than metal brackets (Habibi et al. 

2007) 
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Figure 9:  Ceramic base. 

   

(Willems et al, 1997) 
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 Ceramic brackets have other properties to consider.  Machined ceramic 

brackets produce significantly greater frictional forces than stainless steel brackets 

(Omana et al. 1992).  The brittleness of ceramic brackets can cause problems at 

debond (Gibbs, 1992).  The opposing dentition can incur significant enamel wear if 

in contact with ceramic brackets (Douglas, 1989).   

6.  Lighting 

 Tavas and Watts first described the use of visible light to cure the composite 

resins used to bond orthodontic appliances to enamel in 1979.  Light-cured 

composites have multiple advantages over chemically cured:  ease of use, extended 

working time, improved brackets placement, easier cleanup, and faster cure of the 

composite (Jonke et al., 2008). Curing light as well as ambient light can affect the 

ultimate shear bond strength of orthodontic adhesives.  Light-cured adhesives are 

polymerized by a reaction between the catalyst in the adhesive and the photons 

emitted by the light source (Gange, 2006).   

Light-curing units have evolved from heavy, bulky, corded units with halogen 

lamps to lightweight, portable, light-emitting diode (LED) units.  The greatest 

advantages in light-curing technology have been made with the curing lights, rather 

than the composites themselves (Gange, 2006).  The amount of time required to 

cure the adhesive depends on the manufacturer’s recommendation and the 

wavelength emitted by the curing light.    

7.  Clinical Bond Strength Requirements 
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Accidental bracket debonds continue to cost orthodontists in both treatment 

time and money.  Graber et al (2005) have reported that the median rate of bond 

failure for practitioners in the United States is around 5%.  Reynolds (1975) and 

Whitlock el al (1994) have reported that a minimum bond strength of 4.9-7.1 MPa is 

required for successful orthodontic treatment.  However, 20-25 MPa can lead to 

damage of the enamel upon debond due to excessive bond strength (Cal-Neto et al 

2006, Yamada et al 2002).   An investigation by Retief, (1974) indicated that enamel 

fractures can occur on debonding with bond strengths as low as 9.7 MPa.  Creating 

the desired location of bond failure and titration of bond strength is a challenging 

process.  If the bond between the cement and the enamel is stronger than the 

enamel itself, the enamel will fracture during debonding.  For example, the use of 

silane coupling agents on ceramic bases enhances the bond of the luting cement to 

the ceramic bracket base to the point that it competes with the cohesive strength of 

enamel (Odegaard, 1989; Storm, 1990).  The resulting enhanced bond strength 

between the ceramic bases and the cement results in bond failure at the enamel-

cement interface instead of the cement-base interface (Storm, 1990).  These factors 

both contribute to the likelihood of enamel fracture during debonding. 

8.  Bond Failures and ARI 

Bond failure location plays an important role when it comes to chair time and 

potential damage to the enamel surface (Katona, 1997).  Bond failures can be 

divided into two types: cohesive failure and adhesive failure. Cohesive failures occur 

within the tooth, the bracket, or the cement.  Adhesive failure occurs at the tooth-
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cement and the bracket base-cement interfaces (Compton et al., 1992; Wang and 

Meng, 1992).  The enamel-cement interface is an undesirable bond failure location 

due to the increased risk of damage to the enamel.  In order to protect the enamel 

surface, the ideal bond failure location when debonding is between the bracket base 

and the cement (Sinha et al. 1995). 

Most bonding failures occur between the cement and the bracket (Algera et 

al, 2008; Knoll et al, 1986; Wang et al, 2004).  The Adhesive Remnant Index (ARI) 

was formulated by Artun and Bergland (1984) and is used to quantify the amount of 

cement left on the tooth following debonding of the bracket.  The ARI score can be 

used to identify the sites of bond failure between the enamel, the cement and the 

bracket base.  The traditional ARI scoring system consists of a 4-point scale of 0-3.  

A score of 0 indicates no cement is left on the tooth, 1 indicates less than half of the 

cement is left on the tooth, 2 indicates more than half of the cement is left on the 

tooth, and 3 indicates that all of the cement is left on the tooth including a distinct 

impression of the bracket base. 

To test the shear bond strength of different pylon orientations, 75 of ODP’s 

(Orthodontic Design and Production) ANCHOR-LOCK™ PAD based brackets were 

used (Figure 10).  ODP claims, “The ANCHOR-LOCK™ PAD utilizes pylons instead 

of the traditional mesh mechanical retention system.  ANCHOR-LOCK™ bases are 

designed with an EDM (Electrical Discharge Machining) finish on all five pylon 

surfaces to maximize bracket retention, and the pylons are engineered at an acute 
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angle relative to the torque, generating geometric undercuts when bonded” (ODP 

Website, 2012).  
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Figure 10:  ODP’s Comfort ZoneTM Series with Anchor-LockTM Pad. 

 

 

   

(Anchor-LockTM Pad) 
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Geometrically, an acute pylon angle should provide the greatest mechanical 

retention and therefore the highest bond strength.  However, Knox et al (2001) found 

that acute cement-enamel angles resulted in an increased chance of singularity 

development and attachment failure (i.e., the stress points created by these acute 

angles could lead to failure).  This study examines the effect of acute, perpendicular, 

and obtuse pylon orientation on shear bond strength.   

II. OBJECTIVES 

A.  Purpose of the Present Study 

The purpose of this in vitro study is to determine if retention pylon orientation 

affects shear bond strength of orthodontic brackets.   

B.  Specific Hypothesis 

An acute pylon orientation (from the facial to the occlusal surface) will have 

significantly higher shear bond strength than an obtuse pylon orientation.   

C.  Null Hypothesis 

 Pylon orientation does not significantly affect shear bond strength. 
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III. MATERIAL AND METHODS 

A.  Experimental Design 

ODP ANCHOR-LOCK™ bracket pad’s manufacturing process requires that 

the bracket slot is parallel to the pylons.  For this reason, the maxillary canine MBT 

bracket prescription was selected in order to allow for multiple pylon orientations (-7, 

0, and +7 degrees), while minimizing differences in bracket specifications.  75 

brackets were separated into three groups of 25.  The three groups were divided 

according to their pylon orientation and were labeled: Group 1 (0 degree brackets 

with 90 degree/perpendicular pylons), Group 2 (-7 degree brackets, with acute 

pylons to shear force), and Group 3 (-7 degree bracket flipped 180 degrees to 

achieve +7 degree bracket with an obtuse pylon to shear force) (Figure 11).    

To ensure the bond failures took place at the adhesive-base interface, the 

brackets were bonded to a solid Transbond XTTM surface.  This surface was created 

using a stainless-steel bracket jig (40mm high with a 58mm diameter).  Undercuts 

were added to the bonding sites to firmly secure the composite into the cylinder.  

Transbond XTTM was pressed into the cylinder’s undercuts and formed to the 

contoured surface with a mylar strip.  The Transbond XTTM was then light cured with 

a VALOTM (ULTRADENT, SOUTH JORDAN, UT) curing light at a constant distance 

and angle for 10 seconds from the occlusal and 10 seconds from the gingival.  The 

curing light was tested prior using a resin calibrator (BlueLightTM analytics, HALIFAX, 

NOVA SCOTIA, CANADA) to ensure adequate and consistent curing.  The reading 

for the VALOTM (ULTRADENT, SOUTH JORDAN, UT) curing light was 1300 
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mW/cm2.  The Transbond XTTM surface was then micro-etched since trials 

demonstrated a weak point at the solid adhesive surface and bracket base adhesive 

without this step.  Immediately after, Transbond XTTM was pressed/buttered onto the 

bracket base and the bracket base was pressed onto the jig’s Transbond XTTM 

surface.  The technique used a height gage and the same provider for consistent 

bracket placement.  The excess composite material was removed with an explorer.     

The seated bracket was then light cured at a constant distance and angle for 10 

seconds from the gingival and 10 seconds from the occlusal (Figure 12).  
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Figure 11:  Pylon Orientation Groups 

A - Group 1:  0 degree bracket 

 

B - Group 2:  -7 degree bracket 

 

C - Group 3:  +7 degrees (achieved by flipping -7 degree bracket) 
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Figure 12: Specimen Preparation  

A - Stainless-steel bracket jig (40mm high with a 58mm diameter).   

 

B - Transbond XTTM was pressed into the cylinder’s undercuts. 
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Figure 12: Specimen Preparation (Continued) 

C - Formed to the contoured surface with a mylar strip and light cured with the 

VALOTM (ULTRADENT, SOUTH JORDAN, UT) curing light at a constant 

distance and angle for 10 seconds from the occlusal and 10 seconds from the 

gingival direction. 

 

D - Transbond XTTM was pressed/buttered onto the bracket base. 
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Figure 12: Specimen Preparation (Continued) 

E - The bracket base was pressed onto the jig’s Transbond XTTM surface.  The 

technique used a height gage and the same provider for consistent bracket 

placement. 

 

F - The seated bracket was then light cured at a constant distance and angle 

for 10 seconds from the gingival and 10 seconds from the occlusal. 

 



34 
 

The samples were loaded into a universal testing machine (Instron® Corp, 

Model 5543, Canton, MA), and a straight blade using a crosshead speed of 

1.0mm/min descended upon the bracket until bonding failure occurred (Figure 13).  

Shear bond values in Megapascals (MPa) were calculated from the peak load of 

failure (in Newtons) divided by the specimen surface area (0 deg brackets= 18.7666 

mm^2, +/-7 deg brackets = 18.8928 mm^2) provided by the bracket manufacturer in 

square inches.  This was converted to square millimeters in order to complete the 

Megapascal calculations.  The 0 degree bracket base area is 0.02908835 square 

inches= 18.7666 square millimeters.  The -7 degree bracket base area is 

0.02928405 square inches= 18.8928 square millimeters (Table 1 and Figure 14).  

The mean and standard deviation were determined for each group.   

 

 

 

 

 

 

 

 

 



35 
 

Figure 13: Instron® Universal Testing Machine Shear Force 

A - The samples were loaded into a universal testing machine (Instron® Corp, 

Model 5543, Canton, MA).   

 

B - A straight blade using a crosshead speed of 1.0mm/min descended upon 

the bracket until bonding failure occurred.  

 

  



36 
 

Table 1: Bracket Base Surface Area  

Convert square inches to square millimeters. 

Bracket Base S.A. mm^2 In^2 

Group 1 (0 degree bracket) 18.7666 0.02908835 

Group 2 (-7 degree bracket) 18.8928 0.02928405 

Group 3 (+7 degree bracket) 18.8928 0.02928405 
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Figure 14: Bracket Base Surface Area 

A - Zero degree bracket   

 

B - Negative seven degree bracket (Also used as + seven degree bracket) 
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B. Statistical Management of Data 

An analysis of variance, one-way ANOVA test was then performed to 

determine if there was a significant difference between the three different pylon 

orientations.  The established alpha factor was 0.05, meaning that a p-value less 

than 0.05 would result in the rejection of the null hypothesis at the 5% significance 

level.  We then incorporated a Tukey HSD test to help determine which orientations 

are significantly different from one another accounting for the standard error. 

A modified Adhesive Remnant Index (ARI) was used to evaluate the amount 

of adhesive left on the bracket base after debonding to establish the sites of 

adhesive fracture.  The ARI scoring was done by an individual unassociated with this 

study to prevent bias in scoring. Brackets were  observed with magnification (Nikon 

SNZ-1B at 10X magnification), and the adhesive remaining  was scored with respect 

to the amount of resin material remaining:  ARI 0, no adhesive retained on the 

bracket base with a clear and distinct impression of the bracket base on the 

substrate; ARI 1, less than half of the adhesive retained on the bracket base; ARI 2, 

more than half of the adhesive retained on the bracket base; ARI 3, all of the 

adhesive retained on the bracket base.   See Table 2 and Figure 15.   
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Table 2: ARI Legend 

ARI Score % of Bracket Base 
Covered by Adhesive 

0 0 

1 1-50 

2 51-99 

3 100 
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Figure 15: ARI Examples 

A - ARI=0:  0% Bracket Base Covered by Adhesive.  

   

B - ARI=1:  1-50% Bracket Base Covered by Adhesive. 

      

C - ARI=2:  51-99% Bracket Base Covered by Adhesive. 

   

D - ARI=3:  100% Bracket Base Covered by Adhesive. 
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The Kruskal Wallis test was used to evaluate the ARI.  This was done since 

the Kruskal Wallis test is the nonparametric equivalent of the one-way ANOVA 

analysis and can be used to determine if there is a significant result in the grouped 

data.  The Mann-Whitney test was then run to help determine which groups ARI 

were significantly different from each other. 
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IV. RESULTS  

Table 3 shows the average shear bond strength and ARI value for Group 1 (0 

degree bracket with 90 degree Pylon orientation):  97.7 N (SD= 18.6), 5.21 MPa 

(SD= 1), and 2.1 ARI (SD= 0.4).  Table 4 shows the average shear bond strength 

and ARI value for Group 2 (-7 degree bracket with acute Pylon orientation):  99.4 N 

(SD= 9.8), 5.26 MPa (SD= 0.5), and 2.0 ARI (SD= 0.4).  Table 5 shows the average 

shear bond strength and ARI value for Group 3 (+7 degree bracket with Obtuse 

Pylon orientation): 79.0 N (SD= 18.7), 4.18 MPa (SD= 1), and 1.1 ARI (SD= 0.3).  

Table 6 compares the averages of all three groups. 
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Table 3:  Group 1 (0 degree bracket, 90 degree Pylon Orientation)                    

Shear Bond Strength and ARI Values 

Bracket Test # Peak load of failure 
(N) 

MPa= N/(mm^2) ARI 

1 108.511 5.78 2.00 

2 51.009 2.72 3.00 

3 93.425 4.98 2.00 

4 98.878 5.27 2.00 

5 129.146 6.88 2.00 

6 86.989 4.64 2.00 

7 110.617 5.89 2.00 

8 96.951 5.17 2.00 

9 120.523 6.42 2.00 

10 123.718 6.59 2.00 

11 102.382 5.46 2.00 

12 90.829 4.84 2.00 

13 74.055 3.95 3.00 

14 118.856 6.33 3.00 

15 90.768 4.84 2.00 

16 88.819 4.73 2.00 

17 126.102 6.72 2.00 

18 95.574 5.09 2.00 

19 70.858 3.78 2.00 

20 91.312 4.87 2.00 

21 101.496 5.41 2.00 

22 85.359 4.55 1.00 

23 77.301 4.12 2.00 

24 108.392 5.78 2.00 

25 100.854 5.37 2.00 

Average 97.709 5.21 2.08 

Standard Deviation 18.5604 0.99 0.4 
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Table 4:  Group 2 (-7 degree bracket, Acute Pylon Orientation to shear force) 

Shear Bond Strength and ARI Values 

Bracket Test # Peak load of failure 
(N) 

MPa= N/(mm^2) ARI 

1 107.887 5.71 2.00 

2 93.273 4.94 2.00 

3 108.260 5.73 3.00 

4 105.541 5.59 2.00 

5 111.118 5.88 2.00 

6 84.023 4.45 2.00 

7 96.795 5.12 2.00 

8 99.832 5.28 2.00 

9 96.307 5.10 2.00 

10 98.135 5.19 2.00 

11 87.173 4.61 2.00 

12 81.644 4.32 2.00 

13 109.656 5.80 2.00 

14 101.790 5.39 2.00 

15 108.296 5.73 2.00 

16 91.684 4.85 2.00 

17 88.462 4.68 2.00 

18 111.787 5.92 2.00 

19 99.825 5.28 2.00 

20 109.383 5.79 3.00 

21 96.171 5.09 2.00 

22 109.946 5.82 2.00 

23 109.644 5.80 2.00 

24 80.856 4.28 1.00 

25 96.412 5.10 2.00 

Average 99.356 5.26 2.04 

Standard Deviation 9.7559 0.52 0.351188 
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Table 5:  Group 3 (+7 degree bracket- Obtuse Pylon Orientation to shear force) 

Shear Bond Strength and ARI Values 

Bracket Test # Peak load of failure 
(N) 

MPa= N/(mm^2) ARI 

1 8.307 0.44 1.00 

2 81.620 4.32 1.00 

3 70.147 3.71 1.00 

4 85.714 4.54 1.00 

5 96.580 5.11 1.00 

6 84.714 4.48 1.00 

7 99.631 5.27 2.00 

8 101.364 5.37 1.00 

9 81.709 4.32 1.00 

10 89.450 4.73 1.00 

11 81.382 4.31 1.00 

12 81.292 4.30 1.00 

13 68.512 3.63 1.00 

14 58.462 3.09 1.00 

15 75.424 3.99 1.00 

16 66.985 3.55 1.00 

17 70.462 3.73 1.00 

18 92.746 4.91 1.00 

19 72.014 3.81 1.00 

20 71.939 3.81 1.00 

21 101.791 5.39 2.00 

22 79.016 4.18 2.00 

23 80.294 4.25 1.00 

24 79.042 4.18 1.00 

25 95.623 5.06 1.00 

Average 78.969 4.18 1.12 

Standard Deviation 18.67447 0.99 0.33166 
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Table 6: Group Means Compared 

Group (N=25) N (Newtons) MPa 
(Megapascals)  

ARI (Adhesive 
Remnant Index) 

Group Degrees Mean St Dev Mean St Dev Mean St Dev 

1 0 97.709 18.5604 5.21 0.99 2.08 0.4 

2 -7 99.356 9.7559 5.26 0.52 2.04 0.351188 

3 +7 78.969 18.67447 4.18 0.99 1.12 0.33166 
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Comparing shear bond strengths 

The Univariate Analysis of Variance revealed a significant difference among 

the three groups; p < 0.001.  The Tukey HSD test revealed which groups were 

significantly different from each other (Table 7 and Figure 16).   Group 3 was found 

to have significantly lower shear bond strength than groups 1 and 2 (P < 0.001).  

Groups 1 and 2 were not significantly different from each other.  
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Table 7: Tukey HSD   

 

MPa (Std. Deviation) 

Group a b 

1)            0    deg 5.2072 (0.9875)  

2)           -7   deg 5.2580 (0.5165)  

3)          +7  deg  4.1792 (0.9849) 

Groups under the same letter column are not significantly different (P> 0.05).  Group 

3 is significantly different from groups 1 and 2 (P <0 .001). 
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Figure 16:  Shear Bond Strength MPa 
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ARI (Adhesive Remnant Index) 

The mean ARI score for each group was: group 1= 2.1, group 2= 2.0, and 

group 3= 1.1.  When comparing the adhesive remnant indexes, the Kruskal-Wallis 

Test revealed a significant difference exists between the groups (P < 0.001).   The 

Mann-Whitney Test revealed that group 3 retained significantly less adhesive in the 

bracket base (lower adhesive remnant score) than groups 1 and 2.  Groups 1 and 2 

were not significantly different from each other (Table 8 and Figure 17). 
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Table 8:  Mann-Whitney Test 

ARI Average (Std. Deviation) 

Group a b 

1)            0    deg 2.08 (0.4)  

2)           -7   deg 2.04 (0.35)  

3)          +7  deg  1.12 (0.33) 

Groups under the same column letter are not significantly different (P> 0.05).  Group 

3 is significantly different from groups 1 and 2 (P <0 .001). 
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Figure 17:  Bracket ARI (Adhesive Remnant Index) Score 
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In summary, the results indicate that a significant difference exists between 

bracket orientation, shear bond strength and ARI.  Group 3 (+7 degree bracket, 

obtuse pylon orientation) had significantly lower shear bond strength than groups 1 

and 2.  Group 3 also retained significantly less adhesive on the bracket base. 
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V. DISCUSSION 

Bond strength of orthodontic brackets has been studied for more than thirty 

years. The key features of bracket bond strength orthodontists have been searching 

for include:  withstanding functional and mechanical forces while remaining bonded 

to the tooth for the duration of treatment, and at the end of treatment being able to 

easily remove the bracket without damaging the tooth surface (Richardson, 2010).  

Even though considerable progress has been made regarding the titration of bond 

strength and conservation of enamel, accidental debonds remain a source of 

frustration for both patients and practitioners alike. 

Extensive literature exists regarding different types of bracket bases and their 

affect on shear bond strength; however, this researcher has not discovered any 

literature that examined the orientation of base pylons and its affect on shear bond 

strength.  

 The purpose of this in vitro study was to determine if retention pylon 

orientation affects shear bond strength of orthodontic brackets.  75 of ODP’s 

(Orthodontic Design and Production) ANCHOR-LOCK™ PAD based brackets were 

used to test this question.  The results indicated the 90 degree and acute pylon 

orientation angles were significantly more resistant to shear forces than an obtuse 

angle (P < 0.001).   The 90 degree and acute angles also retained significantly more 

of the adhesive in the bracket base (P < 0.001) as determined by the ARI (Adhesive 

Remnant Index). 
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Reynolds (1975) and Whitlock el al (1994) have reported that a minimum 

bond strength of 4.9-7.1 MPa is required for successful orthodontic treatment.  All 

pylon orientations tested with the exception of the obtuse pylon orientation (+7 

degrees) fell within this range.  The negative 7 degree bracket averaged 5.26 MPa, 

the 0 degree bracket averaged 5.21 MPa and the positive 7 degree bracket 

averaged 4.18 MPa.  Overall, these values were somewhat low debond strengths.  

Especially when considering that more modern shear bond strength studies report 

desired bond strengths of 8-12 MPa (Bishara et al, 2001; Bishara et al, 2005).  

However, this experiment focused on the comparison between different pylon 

orientations (while limiting as many variables as possible) rather than focusing on 

absolute shear bond strength values.  Differences existed between the in vitro model 

and the clinical application that may significantly change the raw MPa value. 

Perhaps the most significant difference was the use of a Transbond XT block as a 

bonding substrate instead of enamel.   

 Bonding to secured blocks of Transbond XT allowed for consistency and 

close observation on how the failure took place within the adhesive layer or within 

the bracket base-cement interface.  However, the additional thickness of the 

Transbond XT may have introduced unknown variables.  For example, bonding to a 

secured block of Transbond XT may have allowed more distortion at the adhesive 

surface than enamel would have during shear force application. 

 The shapes and orientation of the brackets were not identical.  Minor 

differences exist between the 0 degree and -7 degree brackets.  The +7 degree 
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bracket was the -7 degree bracket flipped 180 degrees.  These differences may also 

have had an effect on shear bond strength.  We did not only vary the pylon 

orientation and keep other bracket features identical due to the current 

manufacturing process.  The current manufacturing process requires that the pylon 

orientation is in the same plane as the arch wire slot.    

ODP’s ANCHOR-LOCK™ PADs are currently designed to create geometric 

undercuts relative to the torque (ODP Website, 2012). The results of this study 

suggest that this bracket design is more guarded against debonding from the 

mechanical forces of torqueing than if the bracket was designed with an obtuse 

angle relative to the torque.  However, a 90 degree angle relative to the torque may 

offer statistically similar bond strength.  It is important to note that the statistical 

differences may not equate into clinical importance.   

In vivo, bonded brackets are exposed to dynamic forces.  Hammad et al 

(2012) found survival rates did not show significant differences between the upper 

and lower dental arches (P > 0.05), torquing forces may be the most appropriate 

force to guard against.  However, in 2002, Adolfsson et al did find that bond failure 

rates have been shown to be significantly higher in the mandible.  This suggests that 

biting forces are worth considering.  The average biting force that an individual 

produces during chewing is 14kg (137N) and the average maximum biting force is 

31 Kg (304 N) (Proffit, et al 1983).   

An interesting finding was that there was not a significant difference in shear 

bond strength between 90 degree and acute pylon orientation.  Further examination 
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on the range of pylon orientations is needed, but this suggests that having acutely-

angled pylons does not offer increased bond strength in comparison to pylons at a 

right angle to the substrate surface.  There was also no significant difference 

between ARI (adhesive remnant index) scores between these two groups.  This 

means that the amount of cement left on the substrate surface is similar for both the 

90 degree and acute angle groups. 

These findings could lead to innovations for bracket removal.  The same 

bracket could have different shear bond strengths depending on the direction of 

force applied in regards to pylon orientation.  Ideally, for maximum retention, the 

pylons would be oriented in either a 90 degree or at an acute angle relative to the 

expected forces the bracket will have to endure.   In addition, the bracket base would 

have an obtuse pylon orientation relative to the intentional debond force direction to 

decrease the force needed.  For example, a mandibular bracket could have its acute 

angle facing occlusally to resist mastication forces and its obtuse angle from the 

gingiva to decrease the force needed to debond in an occlusal direction.  

Theoretically this would result in equal greater resistance against accidental 

debonds and increased ease (i.e. decreased force required to remove bracket) of 

intentional debonds.  While using a debonding force to obtain an obtuse pylon 

direction would decrease the force required, it would also result more adhesive 

being left on the tooth surface. This bracket cement interface is the ideal failure site 

to maintain enamel integrity (Sinha et al, 1995).  However, this would lead to 

increased difficulty of enamel clean-up (Brown, 1978; Pus, 1980).  According to Van 
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Waes (1996), although the average enamel loss that occurs while removing 

orthodontic adhesive with carbide burs is only 7.4 um, great care must be taken to 

avoid excessive damage to the enamel surface. 

VI. CONCLUSIONS 

 This study concluded that pylon orientation affects shear bond strength.  

Significantly higher shear bonds strengths are associated with perpendicular and 

acute angles of pylons (from the direction of the force applied) in comparison to an 

obtuse angle.  However, at the angles tested (+/- 7 degrees), acute pylon orientation 

did not significantly increase bond strength in comparison to a 90 degree angle.  It is 

likely that once a certain acute degree is reached, the trend would begin to reverse 

itself and lead to lower shear bond strengths.  Continued research needs to be done 

to compare the entire range of possible pylon orientations and their associated shear 

bond strengths.  This information could be used to ensure we are achieving the 

maximum bond strength possible, or conceivably customize brackets to resist 

different levels of shear bond strength depending on location and forces the bracket 

is subjected to.  Additionally, the potential exists to affect the ease of intentional 

debonds by varying the pylon orientation and direction of force applied. 

 This study also found that pylon orientation affects the ARI (adhesive remnant 

index) score.  Higher ARI scores (more cement remaining in the bracket and by 

inference, less cement remaining on the substrate surface) are associated with a 

perpendicular and an acute angle of pylons from the direction of force applied.  At 

the angles tested, having an acute angle (- 7 degree bracket) instead of a 90 degree 
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angle did not significantly increase ARI score.  In summary, obtuse pylon orientation 

to shear force applied results in less cement remaining on the bracket surface (more 

on the substrate surface) and 90 degree and acute pylons result in more cement 

remaining on the bracket surface (less on the substrate surface). 

The results of this study cannot be directly compared to in vivo conditions; 

however, the results do show an interesting pattern.  These finding could prove 

clinically significant in the following ways:   

1. To be able to ensure maximum achievable bond strength of pylon 

bases if desired.   

2. The ability to titrate pylon orientation in order to meet the desired 

debond strength of each bracket.   

3. Titrating pylon orientation to achieve a desired adhesive failure location 

leaving as much or as little adhesive on the tooth surface as desired.   

4. Designing bracket bases to have significantly different shear bond 

strengths depending on the direction in which the force is applied.   
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